Lambert-Eaton syndrome IgG inhibits transmitter release via P/Q Ca2+ channels
نویسندگان
چکیده
OBJECTIVE To determine whether immunoglobulin G (IgG) from patients with Lambert-Eaton myasthenic syndrome (LEMS) decreases action potential–evoked synaptic vesicle exocytosis,and whether the effect is mediated by P/Q-type voltage-gated calcium channels (VGCCs). METHODS IgG was obtained from 4 patients with LEMS (3 males, 1 female), including 2 patients with lung malignancy. Antibodies against P/Q-type VGCCs were detected in all 4 patients, and against N-type VGCCs in 2. We incubated neuronal cultures with LEMS IgG and determined the size of the total recycling pool of synaptic vesicles and the rate of action potential–evoked exocytosis using fluorescence imaging of the amphiphilic dye SynaptoRed C1. Pooled IgG from healthy volunteers was used as a control. We repeated the experiments on synapses lacking P/Q-type calcium channels from a Cacna1a knockout mouse to determine whether these channels account for the pathogenic effect of LEMS IgG. RESULTS LEMS IgG had no effect on the total recycling pool size but significantly reduced the rate of action potential–evoked synaptic exocytosis in wild-type neurons when compared with neurons treated with control IgG. In contrast, LEMS IgG had no effect on the rate of synaptic vesicle exocytosis in neurons lacking P/Q-type channels. CONCLUSIONS These data provide direct evidence that LEMS IgG inhibits neurotransmitter release by acting on P/Q-type VGCCs.
منابع مشابه
Lambert-Eaton sera reduce low-voltage and high-voltage activated Ca2+ currents in murine dorsal root ganglion neurons.
Voltage-gated Ca2+ channels are categorized as either high-voltage activated (HVA) or low-voltage activated (LVA), and a subtype (or subtypes) of HVA Ca2+ channels link the presynaptic depolarization to rapid neuro-transmitter release. Reductions in transmitter release are characteristic of the autoimmune disorder, Lambert-Eaton syndrome (LES). Because antibodies from LES patients reduce Ca2+ i...
متن کاملClassic diseases revisited Lambert-Eaton myasthenic syndrome
The Lambert-Eaton myasthenic syndrome is a neuromuscular disorder characterised by defective neurotransmitter release at autonomic neurones and presynaptic terminals of the neuromuscular junction. It is caused by an IgG autoantibody formed against especially the P/Q type of voltagegated calcium channels (VGCC) which is an essential component of the mechanism of neurotransmitter release. Many pa...
متن کاملCalcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses.
We studied how Ca2+ influx through different subtypes of Ca2+ channels couples to release at a calyx-type terminal in the rat medial nucleus of the trapezoid body by simultaneously measuring the presynaptic Ca2+ influx evoked by a single action potential and the EPSC. Application of subtype-specific toxins showed that Ca2+ channels of the P/Q-, N-, and R-type controlled glutamate release at a s...
متن کاملN- and P/Q-type Ca2+ channels mediate transmitter release with a similar cooperativity at rat hippocampal autapses.
The relationship between extracellular Ca2+ concentration and EPSC amplitude was investigated at excitatory autapses on cultured hippocampal neurons. This relationship was steeply nonlinear, implicating the cooperative involvement of several Ca2+ ions in the release of each vesicle of transmitter. The cooperativity was estimated to be 3.1 using a power function fit and 3.3 using a Hill equation...
متن کاملHuman autoantibodies specific for the alpha1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons.
The pharmacological properties of voltage-dependent calcium channel (VDCC) subtypes appear mainly to be determined by the alpha1 pore-forming subunit but, whether P-and Q-type VDCCs are encoded by the same alpha1 gene presently is unresolved. To investigate this, we used IgG antibodies to presynaptic VDCCs at motor nerve terminals that underlie muscle weakness in the autoimmune Lambert-Eaton my...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 84 شماره
صفحات -
تاریخ انتشار 2015